

SKX OPEN
SKX ADVANCE

ZN1RX-SKXOPEN

 Edition 2

 Version 1.1

PR
O

DU
CT

 M
AN

U
AL

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 2

INDEX

1. Introduction .. 3

1.1. SKX Interface ... 3

1.2. SKX Installation .. 5

1.3. SKX Advance: Application Program .. 5

1.3.1. SKX Advance Basic Specifications ... 6

1.4. Differences between SKX Open and SKX Advance applications 6

1.5. Advantages of the product and the application .. 7

2. ETS Parameterization .. 8

2.1. Communication configuration ... 8

2.2. Frame configuration .. 11

2.2.1. Frame definition .. 11

2.2.2. Special frames .. 12

2.2.3. Special characters .. 14

2.3. Parameters Groups .. 17

2.3.1. 1 bit objects ... 18

2.3.2. 1 byte Objects .. 20

2.3.3. 14 bytes Objects .. 26

2.4. Error objects .. 28

2.4.1. Error examples ... 29

2.5. Configuration examples ... 34

2.5.1. 1 bit objects ... 34

2.5.2. 1 byte objects .. 35

2.5.3. 14 bytes objects ... 38

3. Product summary .. 40

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 3

1. INTRODUCTION

1.1. SKX INTERFACE

SKX is a ZENNIO interface that allows the connection of the KNX bus with
other devices through a RS-232 serial and bidirectional communication.

Figure 1.1. SKX connection scheme

Nomenclature

They are defined below the most frequently used terms throughout this manual:

 SKX: from now on, SKX will term the SKX Open interface, in order not to
create misunderstandings between the hardware and the application
program of the same name.

 SKX Advance: application program that can be downloaded on SKX
and that allows managing the KNX – RS232 communication.

 RS-232: serial communication type.

 Data Terminal Equipment: external device that will be integrated
through the RS-232 serial port.

KNX
Installation

KNX
bus RS-232

Data
Terminal

Equipment

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 4

Next, the most significant characteristics of the interface are shown, as well as a
SKX elements scheme (figure 1.2):

 Reduced size: 45 x 45 x 14 mm.

 Several communication speeds and error detection mechanisms.

 Ideal for M2M applications.

 Data saving in case of bus power failure.

Figure 1.2. SKX. Elements scheme

The “Prog” button is used to set SKX in programming mode. If this button is
held while plugging the device into the KNX bus, it goes into secure mode.

SKX has a bicolour LED on the front of the hardware. This LED has a double
functionality: on the one hand, if it lights in red, it indicates that the interface is in
the programming mode and if the LED blinks red every 0.5 seconds, the
interface in the secure mode. On the other hand, the LED can work as a
transmission indicator. If it lights green, it indicates that data have been sent
or received through the serial port, staying on 0.3 seconds every time a
communication occurs.

SKX interface can be programmed with two different application programs: SKX
Open and SKX Advance, which differences will be explained in the section 1.4.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 5

1.2. SKX INSTALLATION

SKX installation is very easy: just connect the interface to the KNX bus through
its specific connector and SKX will be ready to be programmed.

SKX does not need external power supply different from the KNX bus one.
However, the RS-232 does need to be powered independently from the KNX
bus (this power is usually got from the terminal equipment connected to the
serial bus).

The SKX – RS232 connection is made through a specific terminal block that
eases its manipulation and installation.

In the following figure it can be seen a typical SKX – RS232 connection:

Figure 1.3. SKX - RS-232 connection

1.3. SKX ADVANCE: APPLICATION PROGRAM

SKX Advance is an application that can be downloaded on the SKX interface.
Its main function is to manage the communication between KNX and the RS-
232 protocol, allowing the configuration of all the interchanged information
between the bus and the terminal equipment. This information interchange is
bidirectional, i.e., it is possible to send data from the KNX bus to the terminal
equipment and vice versa. In the Figure 1.4 there is an example of this of
communication.

SKX Advance is able to send or receive any kind of communication frame
provided that it meets the criteria for RS-232 messages allowed (see section
2.2.1).

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 6

Figure 1.4. Bidirectional communication

1.3.1. SKX ADVANCE BASIC SPECIFICATIONS

It is shown below the basic characteristics of the SKX Advance application:

 Velocity: 1200, 1400, 4800, 9600 or 19200 bauds.

 Parity: even, odd, no parity

 Reception complete mode: Time Out, end-frame byte

 Number of communication objects: 65 (40 of 1 bit, 20 of 1 byte and 5
of 14 bytes)

 Error identification: several 1 bit objects

 Protocol length: the frames configured by parameter in SKX Advance
may have a length greater than 25 bytes, thanks to the possibility of
using special characters on their configuration. Altogether, up to 29
bytes can be sent/received for every message.

1.4. DIFFERENCES BETWEEN SKX OPEN AND SKX ADVANCE
APPLICATIONS

SKX interface can be programmed with two different application programs:
SKX Open and SKX Advance.

The main differences between the two application programs are shown in the
next table:

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 7

Table 1.1. Differences between SKX Open and SKX Advance

1.5. ADVANTAGES OF THE PRODUCT AND THE APPLICATION

The following advantages are associated to the fact of downloading the
application program SKX Advance on the SKX interface:

 Expansion of the installation. It allows integrating in a KNX installation
other devices that do not have KNX communication but a RS-232 serial
port.

 Adaptability. SKX Advance is able to perfectly adapt to the protocol that
governs the functioning of the terminal equipment, regardless its
complexity, i.e., SKX Advance adapts to the terminal equipment and
not the other way.

 Communication versatility. SKX Advance has objects of different types
(1 bit, 1 byte, 14 bytes) with which it interchange information with the
terminal equipment in both directions (bidirectionality).

 Configurability. The messages of the RS-232 communication can be
configured with all the normal characteristics of a serial communication,
like the header and footer frames, checksum, ACK, etc., thus enabling
the sending of dynamic messages of variable length.

 SKX OPEN SKX ADVANCE

Number of Objects 48 65
Object Type 1 bit 1 bit

1 Byte
14 Bytes

Frame Type Fixed Variables (depending
on the object value)

Frame Length Up to 10 bytes Up to 29 bytes
Frames

Acknowledgement
The whole message

must match
Just acknowledgement

of indicated parts
(omission of the rest)

Checksum No Yes
Confirmation (ACK) No Yes

Configurability

- Communication
- Parameters Groups

- Communication
- Frames

- Parameters Groups

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 8

2. ETS PARAMETERIZATION

With the SKX Advance application program is possible to integrate any terminal
equipment with RS-232 interface in a KNX installation if you know the
communication frames that the terminal equipment uses for every order.

SKX Advance has 65 communication objects of different sizes with which it
will be possible to interact with the KNX and RS-232 protocol. It has also
several 1 bit objects to detect possible errors. Therefore, every defined frame
has associated a communication object. All these objects will be explained in
detail in the corresponding sections.

The configurable ETS parameters for SKX Advance are presented below.

Figure 2.1. Default communications objects

Every configuration window of SKX Advance is explained next.

2.1. COMMUNICATION CONFIGURATION

The general configuration window that appears the first time “Edit Parameters”
is clicked on is the following:

Figure 2.2. SKX Advance: Communication Setup

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 9

The following general parameters, related to the frame transmission, can be
configured in this window:

 Velocity (bauds): 1200, 2400, 9600, 19200

 Parity: No parity, odd, even

 Time between frames to be sent (tenths of second): it is the
minimum time between frames to be sent through the serial port. This
parameter is used to separate consecutive frames that must be sent to
the terminal equipment. This can be useful, for example, when linking
more than one object to the same group address. Thus, SKX will be able
to send that frames in an orderly way, enabling a perfect reception and
interpretation of the frames on the terminal equipment. (Note: take into
account the terminal equipment characteristics when configuring the
“Time between frames” parameter).

 Reception complete mode: indicates the way SKX Advance detects
when all the frame characters have been received. There are two ways
to detect the end of frame:

 Time Out: it is a minimum time (milliseconds) between frames.
SKX Advance knows that a frame has been completely received
once this time has elapsed after receiving the last bit of the
frame.

 End-frame byte: it is a byte with a specific value with an
unambiguous interpretation, so that SKX Advance will know the
frame reception has finished when it receives this byte. When
selecting this option, a new drop.-down box will appear, to
configure a security time out, defined as the maximum time SKX
Advance waits to receive the end-frame byte.

Note: before configuring a Time Out for the frame reception, please take into
account the sending duration of every byte, shown in the next table:

Velocity (bauds) Parity Time/byte (ms)

1200 Yes 9,167
No 8,333

2400 Yes 4,583
No 4,167

4800 Yes 2,292
No 2,083

9600 Yes 1,146
No 1,042

19200 Yes 0,573
No 0,521

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 10

If a Time Out of 3 milliseconds and a velocity of 2400 bauds are configured,
SKX Advance will provoke a “Time Out error” for every entry datum, since 4,583
milliseconds are necessary to complete a byte transfer (if there is a bit of parity),
value greater than the configured Time Out (3ms).
Note: this Time Out error is not indicated by none of the error identification
objects.

It is convenient to read the following example to better understand the Time Out
concept:

Example: one terminal equipment takes 80 ms to send its complete frame.

 First Case (Time Out too long): the parameterized Time Out is 30 ms. The
terminal equipment sends a second frame just after the first one. The next
figure shows this behaviour.

Figure 2.3. Time Out too long

At the end of the first frame, the Time Out started to count but another frame
arrived before finishing the Time Out, so it was aborted and started to count
again at the end of the second frame. In this case, as the Time Out comes to
an end (30 ms), SKX Advance thinks that the frame has finished. But two
frames have arrived until the end of frame has been detected, so SKX
Advance considers the frame as unknown and it does not send anything.

 Second Case (Time Out well defined): the defined Time Out is now 10 ms.
The next figure shows this behaviour:

Incorrect
TimeOut
Configuration

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 11

Figure 2.4. Time Out well defined

In this case, the Time Out is well defined, so SKX Advance is able to
recognize the two sent frames.

So that, it is very important to define correctly the Time Out, taking into
account that the time between sent frames from the terminal equipment, since
as it was shown previously, a bad defined Time Out (too long or to short)
could generate errors when receiving the messages.

2.2. FRAME CONFIGURATION

2.2.1. FRAME DEFINITION

The definition/parameterization of the communication frames is carried out by
means of hexadecimal characters (2 characters for byte); therefore, only the
characters between 0-9 and A-F are allowed to define a frame (excepting the
special characters). It is compulsory that the characters A-F are in capitals.

Note: It is convenient to know that a hexadecimal frame, for example “0x2B
0x7F 0x34” must be typed on ETS this way: “2B7F34”.

When defining a serial port frame, ETS has a parameterization text box to type
up to 20 characters. In order to define a frame with more characters, thus
achieving a greater versatility in the communication (variable data, non fixed
frame sizes, etc.) it is allowed to configure different sections of the frame. This
way, it will possible to transmit/receive up to 29-bytes-frames.

Communication frames can be odd; what must necessarily be even is the set of
characters that are typed by parameter (2 characters for byte).

Correct
Time Out
Configuration

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 12

The non-compliance of any of these frame parameterization requirements will
make SKX Advance to send error statuses to the KNX bus after being
programmed, through the communication objects enabled for that purpose and
that will be explained later in this manual.

2.2.2. SPECIAL FRAMES

There is the possibility of configuring a set of special frames that allow a
complete communication with the equipment that is going to be integrated in
the KNX installation through RS-232.

The utilization of these frames is completely optional. The aim of them is to
provide with enough mechanisms to generate dynamic messages in a
communication protocol, enabling the use of headers, footers, subframes, and
the sending of automated acknowledgements.

Figure 2.5. SKX Advance: Frame configuration (special frames)

Next, the explanation of each special frame:

 Header: this frame can appear at the beginning of every sent or
received frame automatically (“Always”) or just when indicated in the
frame (“Only with key”) by means of the special character ‘@h’. If “No” is
chosen, the header will not be included in the frame.

 Footer: this special frame is included at the end of the defined frames
(by parameter). Like header, its insertion can be disabled (“No”), or it
can be always included at the end of the frame (“Always”) or only when
indicated (“Only with key”) by means of the special character ‘@f’.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 13

 Subframes 1 and 2: they can be included in any part of the defined
frame, by means of the keys ‘@1’ y ‘@2’ respectively.

 Checksum: this special frame allows including a checksum, calculated
in every case (reception or sending) from the first byte till the byte before
the checksum one. It can be included in the frame by means of the key
‘@c’ or it can be pointed out that every frame has a determined
checksum at the end (after the footer, if any). There is also an additional
parameter (Offset) that tells the program to calculate the checksum
starting from the byte indicated in this parameter.

The supported checksum types are the following:

 Parity word: XOR operation, byte by byte.

 Modular sum: it sums all the frame bytes, modulo 256.

 Modular sum complemented: similar to the previous one, but in
this case, the result is performed 2’s complement.

 CRC-8 y CRC-16: cyclic redundancy check of 8 and 16 bits
respectively. It is necessary to write a decimal number to define
the CRC characteristic polynomial.

 Acknowledgements (ACK): SKX Advance allows sending
automatically fixed ACK frames to any frame received from the serial
port. This frame is defined in the “ACK” field. The application program
also allows configuring a specific frame (in the “ACK reply” field) as an
acknowledgement sent by the terminal equipment, so when SKX
Advance receives this frame, it will not send any kind of ACK. Therefore,
it is necessary to define here the possible ACK frames that the terminal
equipment sends.

Figure 2.6. ACK frames and ACK reply

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 14

2.2.3. SPECIAL CHARACTERS

As mentioned before, there is a set of special characters that can be added to
the defined frames to give them a greater a versatility, thus enabling the
generation and detection of a greater set of messages.

Besides, this type of characters intend to allow the utilization of regular
expressions in the frame definition.

Two groups can be distinguished: special characters for reception and special
characters for transmission and reception. Next, an explanation:

 Special characters for reception: these characters can only be used in
the parameterization of frames that will be received through the serial
port; if they are used in the parameterization of frames to be sent, this
will generate an error message.

 ?1, ?2,… , ?9: the next 1, 2,…, 9 bytes will be ignored when
analyzing the frame.

Example: it is parameterized the sending of a “1” value through
the 1 bit communication objet number 2 if SKX receives the
following frame through the serial port: “AA?223”. The terminal
equipment starts sending frames, including the following:

“AA857D23”  SKX sends the corresponding object with a “1”
value, since the two bytes 857D are ignored, as it was specified
by parameter, and the fixed part of the frame matches the
parameterized one.

“AA112223”  same case as before. Now, SKX ignores the
bytes 1122.

“AA685AB923”  SKX Advance will not send the value of the
object, since the fixed part of the received frame does not match
the parameterized one. The device will ignore the 2 bytes that
follow AA (685A), as configured, and it will interpret B923 as the
fixed part of the frame and, as it does not match the defined 23,
the object number 2 will not send the “1” value.

 **: it indicates that zero or more bytes of any value will appear
until finding the fixed part of the frame defined by parameter
(excluding the keys @h, @f, @1, @2). Therefore, the **
characters will represent the minimum set of characters found
before the detection of the constant part after **.

Example: it is parameterized the sending of the value “50”
through the 1 byte communication object number 41 when
receiving through the serial port the frame: “23**AB”. The
terminal equipment sends this:

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 15

“231214AB”  SKX Advance starts analyzing the frame: 23 and
AB are the fixed parts of the frame and all the bytes found before
AB (constant part after ** in the frame definition) will be the
characters defined as **. The frame matches the frame
configured by parameter, so the object number 41 sends the
value 50.

“23ABAB”  in this case, SKX Advance interprets that ** in the
empty set, as there are no characters between 23 and the first
AB of the frame. SKX continues analyzing the frame and it finds
the AB characters again, thus interpreting a mismatch between
this frame and the parameterized one, so it does not send the
value 50 through the object 41.

 Special characters for transmission and reception: these characters
can be used in the definition of incoming or outgoing frames.

 Subframes Keys: they are defined this way “@ + character”
and represent the inclusion of one of the frames defined in the
“Frame configuration” window. The different possibilities are:

 @h: includes a header frame.

 @f: includes a footer frame.

 @1, @2: includes the subframe 1 or 2, respectively.

 @c: includes the checksum byte (or bytes).

 ##: this character indicates the variable part associated to the
communication object.

1 bit objects: it cannot be used.

1 byte objects: ## will always be 1 byte long. There are 4
cases in which this character can be used:

 Send variable frame: SKX Advance will
automatically insert the value of the corresponding
communication object in the position of the frame
occupied by the character ##.

Example: it is defined by parameter this variable frame:
“1234##55”. The 1 byte communication object number 44
receives the value 16 (decimal) through the KNX bus.
Therefore, SKX Advance will send to the terminal
equipment the frame “12341055”.
(Note: SKX converts the 16 decimal value into its
hexadecimal equivalent (0x10) and inserts it in the

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 16

position occupied by ## in the ETS definition of the frame
to sent it properly).

 Get variable object: the communication object will
have the value received on the position occupied by the
special character in the frame sent from the terminal
equipment.

Example: it is defined the following frame associated to
the 1 byte object number 48: “AA##E8”. The terminal
equipment sends this to SKX: “AA02E8”, so the object will
have the value 2 and will send it through the KNX bus.

 Send variable frame (%): similar to send a variable
frame, but the value of the communication object will be
preciously converted from KNX percentage (0-255) to the
standard one (0-100 %).

 Get variable object (%): similar to get a variable
object, but the variable byte will be converted from
standard percentage (0-100) to KNX percentage (0-255).

Note: when sending and receiving fixed frames, the character ## cannot be
used.

14 bytes objects: ## will always represent a chain of
characters. In the case of frame transmission, this will be the
point where SKX Advance should copy the characters
received from the KNX bus; in the case of reception, this will
the starting point of the characters frame that SKX Advance
must copy in the corresponding communication object.

In the sections 2.3.1, 2.3.2 y 2.3.3 there are some examples about the use of
special characters with the SKX Advance objects.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 17

2.3. PARAMETERS GROUPS

The communication object groups to use can be enabled here.

SKX Advance has a total of 65 communication objects, distributed this way:

There are 40 1-bit communication objects, whose object numbers are in the
range 0 to 39; 20 1-byte objects, between 40 and 59, and 5 14-bytes objects,
with numbers between 60 and 64.

When enabling the parameters groups, the parameter boxes corresponding to
each of them are shown:

Figure 2.7. SKX Advance: Parameters groups

It is necessary to enable the objects with which work, inside every parameters
group, and to configure the options for every kind of communication object.

Next, the different communication object types available are axplained:

Size Number of groups Number of objects per group
1 bit 4 10

1 byte 2 10
14 bytes 1 5

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 18

2.3.1. 1 BIT OBJECTS

The 1 bit objects allow sending a data frame from SKX to the terminal
equipment, through RS-232, when SKX receives through the KNX bus a value
previously parameterized in ETS (0 or 1) for the configured object (objects witn
number from 0 to 39). Besides, this kind of objects also allows the interface to
send a value (0 or 1) through a specific communication object (0-39) when SKX
receives a fixed frame from the terminal equipment, through RS-232.

Figure 2.8. 1 bit communication objects. Group 1

For instance, with the previous configuration, SKX will send to the terminal
equipment through RS-232 the frame “15301A” when SKX receives through the
KNX bus the object number 0 with a 0 value. And if the object number 1
receives a 1, SKX will send the frame “5200AD” to the terminal equipment.

Likewise, if the interface receives through RS-232 the frame
“AABBFF12345687988877”, SKX will write a 0 in the object number 2, whereas
it it receives the frame “0206AB”, SKX will write a 1 in the 1 bit object number 4.

When enabling a 1 bit communication object, two options are shown: one for
selecting the control mode and the other for defining the frame.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 19

 Object X. Control mode: there are 4 control possibilites over every
object, through the following parameters:

Fot the KNX  RS232 communication

 Send frame is object is 0: Sending the frame (typed in the “Object
X. Frame” parameter) to the terminal equipment when receiving a
“0” through the KNX bus in the corresponding communication
object.

Example:

 Send frame if object is 1: Sending the frame (typed in the “Object
X. Frame” parameter) to the terminal equipment when receiving a
“1” through the KNX bus in the corresponding communication
object.

Example:

For the RS232  KNX Communication

 Object 0 if frame fits: Sending a “0” through the object when
receiving through the serial port a frame that fits the parameterized
one.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 20

Example:

 Object is 1 if frame fits: Sending a “1” through the object when
receiving through the serial port a frame that fits the parameterized
one.

Example:

 Objecto X. Frame: to define the frames for the communication. They
should comply with the requirements mentioned in the section “2.2.1.
Frame definition”.

2.3.2. 1 BYTE OBJECTS

The 1 bit objects allow sending a data frame from SKX to the terminal
equipment, through RS-232, when SKX receives through the KNX bus a value
previously parameterized in ETS (0-255) for the configured object (objects witn
number from 40 to 59). Besides, this kind of objects also allows the interface to
send a value (0-255) through a specific communication object (40-59) when
SKX receives a specific frame from the terminal equipment, through RS-232.
These frames can be fixed ir variable, depending on the value of the object and
the same for the ibject value, which can be fixed or dependent on the received
frame.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 21

Figure 2.9. 1 byte communication objects. Group 1

For instance, with the previous configuration, SKX will send to the terminal
equipment the frame “A1B2” through RS-232, when receiving through the KNX
bus the object number 40 wiith the value 50 (decimal). Likewise, when SKX
receives the frame “123D” through RS-232 from the terminal equipment, it will
write the value 5 in the 1 byte object number 43.

When enabling a 1 byte communication object, two options are shown: one for
selecting the control mode and the other for defining the frame

 Object X. Control mode: there are six control possibilities over every
object, through the following parameters:

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 22

For the KNX  RS232 Communication

 Send fixed frame: Sending the frame (introduced in the “Object X.
Frame” parameter) to the terminal equipment when receiving the
value parameterized in the object. When enabling this kind of
control, a new option appears: “Object X. Byte”, where it is defined
the byte SKX expects to receive through the communication object
to send the defined frame.

Example:

 Send variable frame: Sending the frame (introduced in the “Object
X. Frame” parameter) to the terminal equipment when receiving a
value through the communication objecti (via the key ##). The sent
frame will vary depending on the value received through that object
and it will be the same as the parameterized one, replacing ## by
the value of the byte received through the corresponding
communication object.

Example:

Note: here, SKX Advance receives the value “60” through the KNX bus.
This is a decimal value. However, in the frame sent to the terminal
equipment it appears the value “3C” at the position occupied by ## in the
frame definition. “3C” is the hexadecimal value of decimal “60”. SKX
Advance carries out this conversion to correct sending the frame.

 Send variable frame (%): sending the frame (the one typend on the
parameter “Object X. Frame”) to the terminal equipment when
receiving a value through the corresponding communication object
(via the key ##). The received value will be converted into a number
between 0 and 100 (%) and it will be incorporated to the frame

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 23

defined by parameter. The sent frame will vary, depending on the
value received through the object (in percentage) and it will be the
same as the one defined by parameter, replacing ## by the received
value through the corresponding communication object (in
percentage).

Example:

Note: in this case, SKX receives the decimal value “60”. This value in a
KNX percentage (0-255), which is converted to standard percentage (0-
100%) through a simple rule of three (60*100/255). Its equivalent value is
24%. This value is converted to an hexadecimal one: “18”. This value will
replace the characters ## in the frame defined by parameter.

For the RS232  KNX Communication

 Get fixed object: sending the parameterized value through the

corresponding object when receiving through the serial port a frame
that fits the one introduced by parameter. When enabling this kind of
control, a new option is shown: “Object X. Byte”, where it is
defined the byte SKX will write in the communication object when it
receives the frame.

Example:

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 24

 Get variable object: sending a value through the corresponding
communication object when receiving through the serial port a
frame that fits the one introduced by parameter. The value of the
communication object will be the corresponding to the part ##
received in the frama.

Example:

Note: the terminal equipment sends the frame 528722E0 in hexadecimal.
The value that will take the communication object number 41 will be the
corresponding to the ## received part, in this case, “22” (in hexadecimal),
but converted to its decimal value, “34”.

 Get variable object (%): sending a value to the object when
receiving through the serial port a frame that fits the one introduced
by parameter. The value of the communication object will be the
corresponding to the ## received part of the frame (in percentage).

Example:

Note: SKX receives the hexadecimal value “21” in the corresponding part
of ## in the defined frame. This value corresponds to the decimal value
“33”, this time as standard percentage (0-100%), that will be convcerted to

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 25

KNX percentage, by means of a simple rule of three (33*255/100). Its
equivalent value is “84” and it will be sent to the corresponding
communication object.

 Objecto X. Frame: to define the frames for the communication. They
should comply with the requirements mentioned in the section “2.2.1.
Frame definition”.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 26

2.3.3. 14 BYTES OBJECTS

The 14 bytes objects allow sending or detecting text strings into the serial port
frames.

Figure 2.10. 14 bytes communication objects group

When enabling a 14 bytes object, three options are shown to select the control
mode, the end of string type and to define the corresponding frame.

 Object X. Control mode: it exists only one way to control every object,
through the Relay parameter, which allows trasnsmitting again a variable
text string received through the serial port through the KNX bus and vice
versa (via the characters ##).

 Object X. End of string: to select the way to confirm the end of the string.
There are two options:

 Number of chars: it is defined the fixed number of characters (1
to 14) that the sent or received string must have.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 27

Example:

Note: in this example, the string “Test1”, 5 characters, is received through
the communication object number 61. The associated reaction is sendind to
the serial port the following frame: “CC03125465737431”, where CC0312 is
the fixed part of the defined frame and “5465737431” is the ASCII
encoding, character by character, of the string “Test1”. After this, SKX
receives through the serial port the frame “CC03125465737432”, what
means the sending of the string “Test2”, of 5 characters, to the object
number 61.

 End of string identifier: it is defined here the byte that indicates
the end of the string. This byte is usually 0x00.

Example:

Note: the End of string identifier 0x00 has been defined (writing a 0 in the
corresponding box). The object 61 receives the text string “Hola”, which will
provoke a sending through the serial port of the frame
“C40831486F6C6100”, where C40831 is the fixed part of the frame defined
by parameter, 486F6C61 is the ASCII encoding, character by character, of
the “Hola” string and 00 is the defined end of string identifier. After this,
SKX receives through the serial port the frame
“C408314D656E73616A6500”, which generates the sending of the
“Mensaje” string to the object number 61.

 Object X. Frame: to define the frames for the communication. They
should comply with the requirements mentioned in the section “2.2.1.
Frame definition”.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 28

2.4. ERROR OBJECTS

SKX Advance has several 1 bit communication objects that inform about errors
in the operation of the program, mainly due to poor parameterization, although
these errors can also be produced during the communication. Whenever SKX
Advance detects an error, it will send the corresponding 1 bit object and the 1
bit generic error object (“Error code”).

Below the different errors that may occur are described:

 Error: odd length. The set of characters of any frame introduced by
parameter is odd. (Note: remember that this does not mean that the
number of bytes of every frame – frame length – must be even, but the
total number of characters does, since there are two characters for
every byte).

 Error: bad usage of ‘*’ or ‘?’. There is nothing constant after ** or the
character after ‘?’ is incorrect.

 Error: bad usage of ‘@’. Error using the special character @.

 Error: checksum. There is nothing to calculate the checksum, for
instance, because the frame has been configured just as @c, or
because the checksum offset is too big.

 Error: bad usage of ‘#’. Error using ##. Posible sintaxis error ot it is not
possible to associate ## with variable data.

 Error: not hexadecimal. SKX found in a frame defined by parameter a
character with a value different from 0-9 or A-F (for example, a
lowercase).

Note: all the previous errors are parameterization errors.

 Error: too long. The length of the frame to be sent or the received
frame is greater than the maximum allowable length: 29 bytes. (This
error can be a parameterization or a communication one).

 Error: reception. Undefined error of reception through the serial port.
(Communication error).

Whenever the bus power returns, SKX analyzes all the frames introduced by
parameter and, if it detects a failure in the frames, it sends the corresponding
error objects.

There will be only one report for every type of error; i.e., if an error of the
same type is detected in two or more frames (for instance, a bad usage of ‘*’),
this will be reported once.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 29

If a frame has several errors, all of them will be reported, except if the
introduced frame is odd, in which case only the error “Odd length” will be
reported. For instance, the frame “AaB” has an odd length error and a not
hexadecimal error; SKX Advance will only report the odd length error, obviating
the other.

SKX Advance also notifies errors when it tries to send a bad parameterized
fram to the serial port RS-232. In thsio case, it will only report the first
detected error in the frame. For instance, suppose SKX sends the frame
“AAaB?B”; this frame has two errors (there is a not hexadecimal character and
a bad usage of ‘?’), but when it is starting to transmit, the sending will be
stopped when the not hexadecimal error is detected, reporting only this error.

Therefore, SKX Advance notifies the detected errors in the frames after being
programmed and every time wrong frames are received or are going to be
transmitted.

2.4.1. ERROR EXAMPLES

Below a set of examples of the errors that SKX Advance is able to detect.

 Odd length. In the case of trying to send a frame with a set of
characters of odd length, the 1 bit communication object “Error: odd
length” will be enabled, with a “1” value. Besides, the 1 bit object “Error
code” will be enabled and sent to the bus.

Example: it is defined in the object 0 the frame “520001A”, which length
is odd (7 characters).

This will provoke the following error:

Figure 2.11. Error objects: Odd length

 Bad usage of ‘*’ or ‘?’. If after the special character ‘?’ it is added a
value other than [0-9], SKX Advance will activate the 1 bit
communication object “Error: bad usage of ‘*’ or ‘?’”, as well as the

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 30

“Error code” object. These objects will be also enabled if after the
characters ‘**’ does not ppear anything constant.

Example I: it is defined in the 1 byte object number 41 to send the frame
“A1##?AB2”, where appears the character ‘A’ after ‘?’, which is an
invalid value (since it must be a number between 0 and 9).

Figure 2.12. Error objects: bad usage of ‘?’

Example II: it is defined in the 1 byte object number 41 to write the value
15 when SKX receives from the terminal equipment the frame
“16**?29B”. SKX will provoke an error of bad usage of **, since after **
there is nothing constant, but “?2”, which implies the appearance of two
characters that can have any value.

Figure 2.13. Error objects: bad usage of ‘**’

 Bad usage of ‘@’. The special character ‘@’ allows introducing
headers, subframes or footers into a frame, and the keys to write all of
them are already defined, and there cannot be other different from: @h,
@f, @1, @2 and @c. in the case of introducing an invalid character

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 31

after @, SKX Advance will enable the 1 bit communication object “Error:
bad usage of ‘@’”, as well as the object “Error Code”.

Example: it is defined the following frame to send if the object number 1
has the value “1”: “52@324”. The character 3 after @ is not valid, so
SKX Advance will enable the corresponding error object and the frame
will not be sent.

Figure 2.14. Error objects: bad usage of ‘@’

 Checksum. This error reports that it is not possible to perform the
checksum (if it was configured to perform it, in the Frame Configuration)
of a frame because there are no data (the defined frame is empty) or
because the configured offset is too big. If any of these situations
occurs, SKX Advance will enable the 1 bit communication object “Error:
Checksum”, as well as the object “Error code”.

Figure 2.15. Definition of an empty frame. It will generate a checksum error.

 Bad usage of ‘#’. Whenever this character is used in a wrong way, SKX
Advance will enable the 1 bit object “Error: bad usage of ‘#’” and the
object “Error Code”.

Example: the characters ## are used in the definition of a frame in the 1
bit object number 0. SKX Advance enables the corresponding error

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 32

object, since it tries to add a variable part and this is not possible for this
kind of objects.

Figure 2.16. Frame definition with a bad usage of ##

 Frame too long. Since the headers, footers and sibframes allow lengths
of n bytes, it is possible to get a frame definition greater than 29 bytes. If
this happens, SKX Advance will enable the 1 bit object “Error: too long”
and the object “Error Code”.

Example: it is defined a header of 10 bytes, a footer of 10 bytes and a
subframe of 4 bytes. When adding a frame of 10 bytes to the header,
footer and subframe, it exceeds the permissible length limit for a frame,
so SKX Advance will enable the corresponding communication object.

Figure 2.17. Definition of the header, footer and subframe 1

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 33

Figure 2.18. Definition of a frame too long, which will provoke the corresponding
error

 Reception error. When the parameters configuration of the serial
communication does not match with the configuration of the received
frames (different velocity, parity, etc.) SKX Advance will enable the 1 bit
communication object “Error: reception” and the object “Error code”.

Example: the terminal equipment has been configured with a velocity of
9600 bauds, whereas the SKX Advance velocity is 1200 bauds. This will
provoke that SKX Advance enables the reception error.

 Not hexadecimal character. If a not hexadecimal character has been
introduced when defining a communication frame (like a lowercase
letter), SKX Advance will enable the communication objects “Error: not
hexadecimal” and “Error code”.

Example: one the characters used to define the frame of the
communication object number 0 is a lowercase letter: “ABcD”. This will
make SKX Advance tornable the corresponding error object.

Figure 2.19. Frame definition with a not hexadecimal character

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 34

2.5. CONFIGURATION EXAMPLES

As a summary, there are below some examples of frames configuration in SKX
Advance and examples of use, to better understand its operation.

2.5.1. 1 BIT OBJECTS

In the “Frame Configuration” window, the following special frames are defined:

After this parameterization, the 1 bit objects to be used are defined. In this case,
the objects number 0 and the number 1 are enabled to send frames to the
terminal equipment through RS-232 and the object number 2, to receive frames
from the terminal equipment. The parameterization of these objects is as
follows:

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 35

In the following table it is shown a possible operating sequence, with the sent
and received frames in each case. (Note: the bold characters indicate the
Checksum calculated as modular sum of the frame characters).

 * Checksum = 7A = AA+BB+00+23+49+CC+02+83+58

2.5.2. 1 BYTE OBJECTS

In the “Frame Configuration” window, the following special frames are defined:

EVENT REACTION

The object 0 receives a “1” value through
the KNX bus

No action, since the object number 0 only
sends the parameterized frame when it

receives a “0”

The object 0 receives a “0” value through
the KNX bus

SKX sends through the serial port RS-232 to
the terminal equipment the frame

“AABB002349CC0283587A”*

The object 1 receives a “1” value through
the KNX bus

SKX sends through the serial port RS-232 to
the terminal equipment the frame

“AABB002489
SKX receives from the terminal equipment
through the serial port the frame: “0024”

No action. The frame does not fit the
parameterized one

SKX receives from the terminal equipment
through the serial port the frame:

“AABB38322349”

No action, since the received checksum is not
correct (it should be F2)

SKX receives from the terminal equipment
through the serial port the frame:

“AABB383223F2”
SKX writes a “1” in the object number 2

SKX receives from the terminal equipment
through the serial port the frame:

“AABB856D237A”
SKX writes a “1” in the object number 2

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 36

After this parameterization, the 1 byte objects to be used are defined. In this
case, the objects number 40, 41, 42, 43, 44, 45 and 46 are enabled, each of
them with a different task. The parameterization of these objects is the
following:

In the table below it is shown a possible operating sequence, with the sent and
received frames in each case.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 37

EVENT REACTION

The object 0 receives a “12” through
the KNX bus

No action, since the object 40 only sends the
parameterized frame if it receives a “23”

The object 0 receives a “23” through
the KNX bus

SKX sends through the serial port RS-232 to the
terminal equipment the frame

“AABB002349CC028358DD00”*

SKX receives from the terminal
equipment through the serial port the

frame: “3232”

No value is sent to the object, since the frame does not
fit any of the parameterized.

SKX sends the ACK frame = “0033”

SKX receives from the terminal
equipment through the serial port the

frame: “2348”

No value is sent to the object, since the frame does not
fit any of the parameterized.

The ACK frame will not be sent, since the frame “2348”
fits the parameterized ACK reply

SKX receives from the terminal
equipment through the serial port the

frame: “23ABCC028358”

No value is sent to the object 41, although the received
frame fits the defined in the object. But the header
(AABB) has not been sent, and it is compulsory to

receive the frame OK.
SKX sends the ACK frame= “0033”

SKX receives from the terminal
equipment through the serial port the

frame: “AABB23ABCC028358”

SKX writes a “46” in the object number 41, since the
received frame fits the parameterized one (in this case,

** is an empty set).
SKX sends the ACK frame= “0033”

SKX receives from the terminal
equipment through the serial port the
frame: “AABB233333ABCC028358”

SKX writes a “46” in the object number 41, since the
received frame fits the parameterized one (in this case,

** = “3333”).
SKX sends the ACK frame= “0033”

SKX receives from the terminal
equipment through the serial port the

frame: “AABB23ABABCC028358”

SKX does not send any value to the object, because in
this case **=’AB’, which fits the fixed part of the frame
after **, so SKX Advance interprets it as an empty set
and continues analyzing the frame, that will not fit the
parameterized one, so SKX does not send anything

except the ACK.

The object 42 receives through the
KNX bus the value 16 (decimal)

SKX sends to the terminal equipment through RS-232
the frame: “AABB141029” (the value 16 has been

converted to its hexadecimal equivalent: 0x10)

SKX receives from the terminal
equipment through the serial port the

frame: “AABB2314”

No value is sent to the object, although the received
frame fits the defined in the object 43. But there is no

value in the ## part of the frame to indicate the variable
part to write in the object.

SKX sends the ACK frame.

SKX receives from the terminal
equipment through the serial port the

frame: “AABB231493”

SKX writes in the object number 43 the decimal value
(the equivalent of the hexadecimal value received in the

part of the frame: 0x93  147). SKX writes 147 in
the object 43 and sends the ACK.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 38

EVENT REACTION

SKX receives from the terminal
equipment through the serial port the

frame: “AABB231428”

SKX writes in the object 43 the decimal value
equivalente to the hexadecimal received in the ## part

of the frame (0x28  40).
SKX writes 40 in the object 43 and sends the ACK

The object 44 receives through the
KNX bus the value 83

SKX sends through RS-232 to the terminal equipment
the frame

“AABB142129” (the received value 83 is in decimal and
references a KNX percentage. SKX first converts it to

standard percentage  83*100/255 ≈ 33%; and then, to
hexadecimal: 33d  0x21)

The object 44 receives through the
KNX bus the value 255

SKX sends through RS-232 to the terminal equipment
the frame: “AABB146429” (the received value 255 is in
decimal and references a KNX percentage. SKX first
converts it to standard percentage  255*100/255 =

100%; and then to hexadecimal: 100d  0x64)

SKX receives from the terminal
equipment through the serial port the
frame: “AABB2314AABBCCDD83””

SKX writes in the object 45 the decimal value equivalent
to the value received in the part ## of the frame  83.

This is a standard percentage. SKX transforms it to KNX
percentage (83*255/100=212) and this will be the vaue

that SKX writes in the object 45.
SKX sends the ACK frame..

2.5.3. 14 BYTES OBJECTS

 In the “Frame Configuration” window, the following special frames are defined:

After this parameterization, the 14 bytes objects to be used are defined. In this
case, the objects number 60 and 61 are enabled. The parameterization of these
objects is the following:

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 39

In the following table it is shown a possible operating sequence, with the sent
and received frames in each case:

EVENT REACTION

The object 60 receives the string
“Hola” through the KNX bus

SKX sends to the terminal equipment through RS-232 the
frame “C40831486F6C610000DD”, where:

Hola = “486F6C61” (ASCII encoding of each character)
00 = End of string identifier

00DD = Footer
SKX receives from the terminal

equipment through the serial port the
frame: “C408314D656E73616A6500”

No action is performed, since the received frame does not
include the footer

SKX receives from the terminal
equipment through the serial port the

frame:
“C408314D656E73616A650000DD”

SKX writes the string “Mensaje” in the object number 60.

The object 61 receives the string
“Test” through the KNX bus

SKX does not perform any action, since the string does not
have the parameterized length, 5 characters

The object 61 receives the string
“Test1” through the KNX bus

SKX sends to the terminal equipment through RS-232 the
frame “CC0312546573743100DD”, where:

Test1 = “5465737431” (ASCII encoding of each character)
00DD = Footer

SKX receives from the terminal
equipment through the serial port the

frame:
“CC031250727565626100DD”

SKX writes the string “Prueba” in the object 61

SKX receives from the terminal
equipment through the serial port the

frame “CC03125465737400DD”

No action is performed, since the frame has a fixed length (5
characters), and when SKX analyzes it, interprets

“5465737400” as the incoming string; SKX searchs next the
footer, but it does not find it (since what remains is DD).

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 40

3. PRODUCT SUMMARY

 Device Hardware

 SKX– RS232 Connection

 SKX: ZENNIO interface.

 Bidirectional communication between the KNX bus and external
devices with RS-232 (like televisions, surveillance systems,
audio systems, etc.)

 Possibility of expanding an installation with devices that does not
have KNX communication but RS-232.

 SKX Advance: application program.

 Dynamic frames of variable length (up to 29 Bytes)

 Communication objects of several types

 Communication errors detection

 Several transmission velocities

 Adptable to any protocol that govers the operation of the
terminal equipment

 Great versatility.

ZENNiO AVANCE Y TECNOLOGÍA www.zennio.com

 41

ZE
N

N
IO

 T
EC

HN
IC

AL

DO

CU
M

EN
TA

TI
O

N

BECOME USER!

http://zennio.zendesk.com

TECHNICAL SUPPORT

